On the morning of December 13, 2018, the Virgin Galactic WhiteKnightTwo wheeled down a stark runway in Mojave, California, ready to take off. Whining like a regular passenger jet, the twin-hulled catamaran of an airplane passed by owner Richard Branson, who stood clapping in an aviator jacket on the pavement. But WhiteKnightTwo wasn’t just any plane: Hooked between the two hulls was a space plane called SpaceShipTwo, set to be the first private craft to regularly carry tourists away from this planet.

WhiteKnightTwo rumbled along and lifted off, getting ready to climb to an altitude of 50,000 feet. From that height, the jet would release SpaceShipTwo; its two pilots would fire the engines and boost the craft into space.

“3 … 2 … 1 …” came the words over the radio.

SpaceShipTwo dropped like a sleek stone, free.

“Fire, fire,” said a controller.

On command, flame shot from the craft’s engines. A contrail smoked over the folds of the mountains as the spaceship flew up and up and up. Soon, both contrail and fire stopped: SpaceShipTwo was simply floating. The arc of Earth curved across its window, up against the blackness of the rest of the universe. A hanging dashboard ornament, shaped like a snowflake, wheeled in the microgravity of the cabin.

“Welcome to space,” said base. And with that, Virgin Galactic had flown its first astronauts, who were not the government-sponsored heroes of old but private citizens working for a private company.

For most of the history of spaceflight, humans have left such exploits to governments. From the midcentury Mercury, Gemini, and Apollo days to the 30-year-long shuttle program, NASA has dominated the United States’ spacefaring pursuits. But today, companies run by powerful billionaires—who made their big bucks in other industries and are now using them to fulfill starry-eyed dreams—are taking the torch, or at least part of its fire.

Virgin Galactic, for its part, styles itself as a tourism outfit, and space-hopefuls of this sort often speak of the philosophical uplift—the perspective shift that happens when humans view Earth as an actual planet in for-real space. Other companies want to help set up permanent residence on the moon and/or Mars, and they sometimes speak of destiny and salvation. There’s much gesturing toward the strength of the human spirit and the irrepressible exploratory nature of our species.

But let us not forget, of course, that there’s the money to be theoretically made; and the federal government isn’t itself actually flying astronauts anymore. After the closure of the space shuttle program in 2011, the US no longer had the ability to send humans to space and has since relied on Russia. But that’s about to change: Today, two private companies—Boeing and SpaceX—have contracts to fly humans to the International Space Station.

But even before NASA’s programs for sending people to space started to dwindle, business magnates recognized what they could do if they had their own private rockets. They could ferry supplies to the Space Station for the budget-conscious government. They could launch satellites. They could take tourists on suborbital jaunts. They could foster industrial infrastructure in deep space. They could settle the moon and Mars. Humans could become the spacetime-defying species they were always meant to be, and travel often—or even live long-term—away from Earth. It’s exciting: After all, science fiction—that great predictor and creator of the future—has told us for decades that space is the next (the final) frontier, and we should (will, can) not just go but also live there.

The private space companies are taking small steps toward that long-term, large-scale presence in space, and 2019 holds more promise than most years. But the deadlines keep slipping: Like cold fusion, private human space travel is perpetually just around the corner. Perhaps part of the lag is because private human space travel—and especially extended private human space travel—is a nearly untested business model, and most of these companies make much of their money on enterprises that have little to do with humans: Often, the operations that generate revenue in the here and now involve schlepping satellites and supplies close by, not sending humans far off. But because the most promising plans are backed by billionaires with big agendas—and are, in some sense, aimed at other rich people—science fiction could nevertheless become space fact.

The WIRED Guide to Commercial Human Space Flight
The History of Private Human Spaceflight

Today, the capitalists of the space-jet set call their industry New Space, although in earlier days forward-thinkers spoke about “alt.space.” You could say it all started in 1982, when a company called Space Services launched the first privately funded rocket: a modified Minuteman missile, which it christened Conestoga I (after the wagon, get it?). The flight was just a demonstration, deploying a dummy payload of 40 pounds of water. But two years later, the US passed the Commercial Space Launch Act of 1984, clearing the pad for more private activity.

Human passengers climbed aboard in 2001, when a financier named Dennis Tito bought a seat on a Russian Soyuz rocket and took a $20 million, nearly eight-day vacation to the Space Station. Space Adventures, which arranged this pricey flight, would go on to send six more astro-dilettantes to orbit through the Russian Space Agency.

That same year, some guy named Elon Musk, about to be rich from selling PayPal, announced a plan called Mars Oasis. With his m
any monies, he wanted to amp up public support for human settlement on the Red Planet, so that public pressure would impel Congress to mandate a mission to Mars. Through an organization he founded called the Life to Mars Foundation, Musk proposed the following privately funded opening shot: a $20 million Mars lander, carrying a greenhouse that could fill itself with martian soil, to be launched maybe in 2005.

This, let us note, never happened—in part because the cost of launching such a future-garden was so high. A US rocket would have cost him $65 million (around $92 million in 2018 dollars), a reconstituted Russian ICBM around $10 million. A year later, Musk set out to lower the rocket barrier. Switching from “foundation” to “corporation,” he started SpaceX, a rocket company with the explicit end-goal of Mars habitation.

In the early aughts, Musk wasn’t the only one who wanted to send people to space. Pilot (and then astronaut) Mike Melvill flew SpaceShipOne, which resembled a bullet that grew frog legs, to space in 2004. After that test flight and two subsequent trips, SpaceShipOne won a $10 million X-Prize. These flights brought together two New Space dreams: a privately developed craft and private astronaut pilots. After the victory, Virgin Galactic and Scaled Composites developed the high-flying technology into SpaceShipTwo. Unveiled by Virgin in 2009, this passenger vessel was intented to send tourists to space … for the cost of an average house. (After all, why have a home forever when you can go to space for five minutes??)

Virgin Galactic has always kept its focus close to home and on short but frequent flights that stay suborbital. Musk, though, has stuck to his original martian mission. After launching its first rocket to orbit in 2008, SpaceX won a NASA contract to bus supplies to and from the Space Station, and it’s still shuttling cargo there for the agency. But the startup really got its legs in 2012 and 2013, when it launched a squatty rocket called the Grasshopper. Though it didn’t hop high into the air, it landed back on the launch pad, from where it could go up again (like, say, a grasshopper). This recyclability paved the way for today’s reusable Falcon 9 rockets, which have gone up and down and helped transform the ethos of rocket science from one of dispensability to one of recyclability.

Musk’s goal, since the failure of Mars Oasis, has always been to cut launch costs. Today, SpaceX’s Falcon 9 reusable rockets cost $50–60 million—still a lot, but less than the $100 million-plus of some of its competitors. Getting to space, the thinking goes, should not be the biggest barrier a would-be space-farer faces. If SpaceX can accomplish that, the company can—someday, theoretically—send to Mars the many shipments of supplies and humans that are necessary to fulfill Musk’s “MAKE LIFE MULTIPLANETARY” tagline.

But the road to multiplanetarity hasn’t always been smooth for SpaceX. Its reusable rockets have crashed into the ocean, tipped over in the sea, crashed into barges, tipped over on ships, tumbled through the air, spun out, exploded midflight, and exploded on the launch pad.

The course of true New Space, though, never did run smooth, and SpaceX is far from the only company that has experienced crashes. Virgin Galactic, for instance, faced tragedy in 2014 when pilot Pete Siebold and copilot Michael Alsbury were in SpaceShipTwo underneath the WhiteKnight jet.

The flight of SpaceShipTwo did not go as planned. SpaceShipTwo has a “feathering mechanism” that, when unlocked and enabled, slows the ship so that it can land safely. But Alsbury unlocked it early, and it dragged the craft while its rockets were still firing. The aerodynamic forces ripped SpaceShipTwo apart, killing Alsbury. Siebold parachuted, alive, to the ground. A few customers canceled. Most still wanted to go to space, even though the industry has higher-risk and lower-regulation than lower-altitude commercial flights.

Meanwhile, another major corporation—Blue Origin—was quietly crafting its human-mission plans. This celestial venture, funded by Amazon founder Jeff Bezos, started in 2000—before Musk started SpaceX—but stayed pretty stealthy for years. Then, in an April 2015 test launch, the would-be-reusable New Shepard rocket lifted off. It successfully deployed a capsule but failed to land. That November, though, a New Shepard did what it was supposed to: touched back down, beating SpaceX to that launch-and-land goal.

Blue Origin, like Virgin Galactic, wants to use its little rocket to send up suborbital space tourists. And it wants, with bigger dick–lookalike rockets, to help facilitate a permanent moon colony. Bezos has suggested heavy industry should happen off this planet, in places that kind of suck already but have minable resources. The first lunar touchdown, he says, could be in 2023, facilitating an Earth that’s zoned mostly residential and light-industrial.

SpaceX, too, has big 2023 plans. The company announced last September that in 2023 it will send Japanese magnate Yusaka Maezawa and a passel of artist companions on a trip around the moon. NASA has also contracted with the company, and with Boeing, to shuttle astronauts to and from the ISS as part of the commercial crew program, which begins human testing later this year.

Still, for all the hype around these wider-vision companies, Virgin Galactic remains the only private enterprise that has actually sent a private someone to space on a private vehicle.

The WIRED Guide to Commercial Human Space Flight
Future of Private Human Spaceflight

The way these companies see the future, they (humbly, of course) will be the ones to normalize space travel—whether that travel takes you just over the Karman line or to another celestial body. Space planes will ferry passengers and experiments to suborbital spots, touching back down in less time than it takes to watch The Right Stuff. Rockets will launch and land and launch again, sending up satellites and ferrying physical and biological cargo to an industrial base on the moon or the martian home base, where settlers will ensure the species persists even if there’s an apocalypse (nuclear, climatic) on terra firma. Homo sapiens will have manifested its destiny, shown itself to be the brave pioneer it always knew it was. And the idea that we don’t have to be stuck in one cosmic spot forever is exciting!

But all of these enterprises are businesses, not philanthropic vision boards. Is making life casually spacefaring and seriously interplanetary actually a plausible financial prospect? And—more important—is it actually a desirable one?

Let’s start with low-key suborbital space tourism, of the type Virgin Galactic and Blue Origin would like to offer. Some economists see this as fairly feasible: If we know one thing about the world, it’s that some subset of the population will always have too much money and will get to spend it on cool things unattainable for the plebs. If such flights become routine, though, their price could go down, and space tourism could follow the trajectory of the commercial aviation industry, which used to be for the wealthy and is now home to Spirit Airlines. Some also speculate that longer, orbital flights—and sleepovers in cushy six-star space hotels (the extra star is for the space part)—could follow.

After there’s a market for space hotels, more infrastructure could follow. And if you’re going to build something for space, it might be easier and cheaper to build it in space, with materials from space, rather than spending billions to launch all the materials you need. Maybe moon miners and manufacturers could establish a proto-colony, which could lead to some people living there permanently.

Or not. Who knows? I can’t see the future, and neither can you, and neither can these billionaires.

But with long journeys or permanent residence come problems more complicated than whether money is makeable or whether it’s possible to build a cute town square out of moon dust. The most complicated part of human space exploration will always be the human.

We weak creatures evolved in the environment of this planet. Mutations and adaptations cropped up to make us uniquely suited to living here—and so uniquely not suited to living in space, or in Valles Marineris. It’s too cold or too hot; there’s no air to breathe; you can’t eat potatoes grown in your own shit for the rest of your unnatural life. Your personal microbes may influence everything from digestion to immunity to mood, in ways scientists don’t yet understand, and although they also don’t understand how space affects that microbiome, it probably won’t be the same if you live on an extraterrestrial crater as it would be in your apartment.

Plus, in lower gravity, your muscles go slack. The fluids inside you pool strangely. Drugs don’t always works as expected. The shape of your brain changes. Your mind goes foggy. The backs of your eyeballs flatten. And then there’s the radiation, which can deteriorate tissue, cause cardiovascular disease, mess with your nervous system, give you cancer, or just induce straight-up radiation sickness till you die. If your body holds up, you still might lose it on your fellow crew members, get homesick (planetsick), and you will certainly be bored out of your skull on the journey and during the tedium and toil to follow.

Maybe there’s a technological future in which we can mitigate all of those effects. After all, many things that were once unimaginable—from vaccines to quantum mechanics—are now fairly well understood. But the billionaires don’t, for the most part, work on the people problems: When they speak of space cities, they leave out the details—and their money goes toward the physics, not the biology.

They also don’t talk so much about the cost or the ways to offset it. But Blue Origin and SpaceX both hope to collaborate with NASA (i.e. use federal money) for their far-off-Earth ventures, making this particular kind of private spaceflight more of a public-private partnership. They’ve both already gotten many millions in contracts with NASA and the Department of Defense for nearer-term projects, like launching national-security satellites and developing more infrastructure to do so more often. Virgin, meanwhile, has a division called Virgin Orbit that will send up small satellites, and SpaceX aims to create its own giant smallsat constellation to provide global internet coverage. And at least for the foreseeable future, it’s likely their income will continue to flow more from satellites than from off-world infrastructure. In that sense, even though they’re New Space, they’re just conventional government contractors.

So, if the money is steadier nearby, why look farther off than Earth orbit? Why not stick to the lucrative business of sending up satellites or enabling communications? Yes, yes, the human spirit. OK, sure, survivability. Both noble, energizing goals. But the backers may also be interested in creating international-waters-type space states, full of the people who could afford the trip (or perhaps indentured workers who will labor in exchange for the ticket). Maybe the celestial population will coalesce into a utopian society, free of the messes we’ve made of this planet. Humans could start from scratch somewhere else, scribble something new and better on extraterrestrial tabula rasa soil. Or maybe, as it does on Earth, history would repeat itself, and human baggage will be the heaviest cargo on the colonial ships. After all, wherever you go, there you are.

Maybe we’d be better off as a species if we stayed home and looked our problems straight in the eye. That’s the conclusion science fiction author Gary Westfahl comes to in an essay called “The Case Against Space.” Westfahl doesn’t think innovation happens when you switch up your surroundings and run from your difficulties, but rather when you stick around and deal with the situation you created.

Besides, most Americans don’t think big-shot human space travel is a national must-do at all, at least not with their money. According to a 2018 Pew poll, more than 60 percent of people say NASA’s top priorities should be to monitor the climate and watch for Earth-smashing asteroids. Just 18 and 13 percent think the same of a human trip to Mars or the moon, respectively. The People, in other words, are more interested in caring for this planet, and preserving the life on it, than they are in making some other world livable.

But maybe that doesn’t matter: History is full of billionaires who do what they want, and it’s full of societal twists and turns dictated by their direction. Besides, if even a fraction of a percent of the US population signed on to a long-term space mission, their spaceship would still carry the biggest extraterrestrial settlement ever to travel the solar system. And even if it wasn’t an oasis, or a utopia, it would still be a giant leap.

The WIRED Guide to Commercial Human Space Flight
Learn More
  • It’s Time to Rethink Who’s Best Suited for Space Travel
    The definition of the “right stuff” has changed since the military test-pilot astronauts of old became the first US astronauts. Maybe it should expand to include people with disabilities.

  • Meet the Astronauts Who Will Fly the First Private “Space Taxis”
    Soon, NASA will be sending up its first cohort of commercial astronauts. Here’s who they are.

  • The Race to Get Suborital Tourists to Space Is Heating Up
    There’s a new space race, and this time you’re not paying for it with your tax dollars but with your discretionary income.

  • The Japanese Space Bots That Could Build “Moon Valley”
    If humans do develop a long-term presence in space, they’ll definitely need to help of a few good robots.

  • Jeff Bezos Wants Us All to Leave Earth—for Good
    A billionaire’s got to dream, right? Here’s what Bezos and his money see in space’s future.


Similar Posts